Tag Archives: tokens

Bubble Pop Electric

30 Sep

Bubble Pop Electric is Ali J. McKenna, Lorraine Shim, and Alex Olivier.  Bubble Pop Electric is a bubble-covered electronic pop mixing station.  Bubble Pop Electric is the future of performance.  (And yes, Bubble Pop Electric is a Gwen Stefani song, please don’t sue us, Gwen).

Bubble Pop Electric combines musical performance, lighting design, and fashion into one wearable, portable package.  Instead of delegating aspects of an artist’s performance to costume designers, light and sound technicians, and the editing studio, Bubble Pop Electric returns all control to the artist.

Using bubble tokens stored in a beautiful headpiece, the artist can decorate her outfit and mix music.  As each token is attached to her bodysuit, it lights up and is automatically assigned a selection of sound clips that the artist can choose to play.  At this point, we are still considering different options for how to play each clip.  The artist may tap the bubble to play part of a clip, or the bubble may cause the clip to continuously play while it is connected.  In order to differentiate the musical bubbles from the decorative ones, each type of bubble will have a separate color of LED.

Bubble Pop Electric will use conductive strips of a Lycra-like fabric to transform the artist’s body into a variable resistor.  As the artist moves and dances to her musical creation, the conductive pseudo-Lycra will subtly modify portions of her music, and potentially the lights in her bubbles.

Here’s a picture of a silver conductive stretch fabric from http://www.lessemf.com:

The last portion of our project is a pair of drum shoes.  As the artist walks on the stage, she can walk, stomp her feet, or dance, causing vibration sensors in her shoes to produce percussion sounds.  We hope that by dancing to the beats she is playing, the artist can create a sense of unity between the various sound clips in the bubbles.

Concerns:

Keeping in mind that this is just a conceptual design, we want to address the following potential issues:

1) Not overwhelming the user with an excess of options.  Interaction should feel natural, yet expressive.

2) How can we allow the artist to play different sound clips without producing a cacophony of horrible music?

3) What other controls can we add to the suit?  How will we control how the bubble’s music is played?

4) What functionality can the hat serve besides a “holder”?

Technical Details:

We’d like to use a Bluetooth chip to send sensor information to a controller computer.  This computer will then send musical data back to Bluetooth speakers located in the outfit’s shoulderpads.  This will allow us to process and store musical data without taping a computer to our outfit.

Bubbles will be connected to the suit via conductive Velcro.  This will allow bubbles to turn on only when connected to the suit.  We’re thinking of embedding a magnet and using a magnetic sensor to detect when a bubble is present.  We’ll then use event-based programming to manage when songs are playing and not.

heavily take advantage of a user’s sense of naive physics (NP) – a user will be able to sense when a landscape structure is precarious or unstable rather than relying on a computer’s computation.  Much more intuitive than a CAD program, the user is able to mold, build up, and depress the material instinctively instead of searching through a library of complex extruding, sweeping, or filleting options.